Hsp Subcategories of Eilenberg-moore Algebras
نویسنده
چکیده
Given a triple T on a complete category C and a factorization system E /M on the category of algebras, we show there is a 1-1 correspondence between full subcategories of the category of algebras that are closed under U -split epimorphisms, products, and M -subobjects and triple morphisms T S for which the induced natural transformation between free functors belongs to E .
منابع مشابه
Applications of the Kleisli and Eilenberg-Moore 2-adjunctions
In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...
متن کاملON THE CAPACITY OF EILENBERG-MACLANE AND MOORE SPACES
K. Borsuk in 1979, at the Topological Conference in Moscow, introduced concept of the capacity of a compactum and asked some questions concerning properties of the capacity ofcompacta. In this paper, we give partial positive answers to three of these questions in some cases. In fact, by describing spaces homotopy dominated by Moore and Eilenberg-MacLane spaces, the capacities of a Moore space $...
متن کاملCharacterizing the Eilenberg-Moore Algebras for a Monad of Stochastic Relations
We investigate the category of Eilenberg-Moore algebras for the Giry monad associated with stochastic relations over Polish spaces with continuous maps as morphisms. The algebras are characterized through convex partitions of the space of all probability measures. Examples are investigated, and it is shown that finite spaces usually do not have algebras at all.
متن کاملEilenberg-Moore Monoids and Backtracking Monad Transformers
We develop an algebraic underpinning of backtracking monad transformers in the general setting of monoidal categories. As our main technical device, we introduce Eilenberg–Moore monoids, which combine monoids with algebras for strong monads. We show that Eilenberg–Moore monoids coincide with algebras for the list monad transformer (‘done right’) known from Haskell libraries. From this, we obtai...
متن کاملDerandomizing probabilistic semantics through Eilenberg-Moore algebras for the Giry monad
A simple language is defined, a probabilistic semantics and a partial correctness logic is proposed in terms of probabilistic relations. It is shown how a derandomized semantics can be constructed through the Eilenberg-Moore algebras. We investigate the category of EilenbergMoore algebras for the Giry monad associated with stochastic relations over Polish spaces with continuous maps as morphism...
متن کامل